An airspring with plastic rigid components having a specialized coupling adapted for push-in engagement of the pneumatic tubing into the airspring is disclosed. The coupling requires no threading in the plastic structural component of the airspring and is composed of an outer ring through which a coaxial annular sleeve with jaws for tubing engagement slides axially. An O-ring seals the tubing against air leaks. The airspring may be used for vibration isolation or load suspension.
The airspring is a pneumatic envelope which can provide load suspension, shock absorption, vibration isolation, actuating or leveling for a wide variety of industrial and automotive applications previously utilizing hydraulic cylinders and steelsprings. The airspring utilizes a pair of rigid air retaining structural members with a high strength rubber and fabric, air impervious flex member sealed to the retainers to form the working pneumatic cavity.
The form of the flex member may be astraight, relatively tubular form, generally described as a sleeve or a rolling lobe type airspring. In the alternative, the flex member is permanently formed in a convolute configuration, commonly described as a bellows airspring. The retainers in theairspring serve the purpose of structurally connecting two separate portions of the device in which the desired function for the airspring is to be effected. That function may be vibration isolation or actuation between the two portions of the device.
The retainers, thus, are structural members and have conventionally been manufactured from metal. Metal members are commonly cast into a rough configuration, then machined into the exact final form. The machining exposes tiny pores in the castmetal which become air pathways through the metal part and cause air loss from the airspring in service.
To overcome this deficiency, high strength plastic and plastic composites which are reinforced have begun to be used in the retainers forairsprings. The plastic rigid components are light-weight, durable and non-porous. These advantages of the plastic structural members such as the retainers have been offset by the problem of providing suitable means for connection of the pneumaticsystem to the airspring cavity.
This connection must be made through one of the rigid airspring retainers. A common method of connecting the pneumatic source to the airspring has been by providing tapered or pipe threading in a bore through the plasticretainer, and subsequently, screwing a threaded connector into the plastic retainer with sufficient torque to seal the connector into the retainer.
Several problems are inherent and chronic in this method of attachment including: (1) cross-threading ofthe coupling into the retainer, thus creating air leaks; (2) over-tightening of the coupling into the plastic retainer causing a split in the rigid airspring retainer member and failure to maintain the structural integrity. When the coupling body is astandard brass NPTF fitting, the brass threads act as cutting edges destroying the originally provided plastic threads.
The problem of air leakage in metal airspring assemblies has been addressed and largely solved by utilizing threaded couplings which screw into the metallic rigid portions of the airsprings. These types of couplings have wholly beenunsatisfactory for an airspring with rigid plastic retainers, and a solution to the air leakage problem has eluded the industry. What was recognized was a need to provide an airspring and a method of airspring assembly featuring a coupling which couldbe easily inserted into the plastic structural member without employing threaded sockets.
Also, the fluid conduit or tubing which connects the spring to the pneumatic source should be capable of being pushed into engagement in the coupling and firmlysealed and mechanically held. An object of the invention is to provide an airspring having a built-in coupling which allowed the pneumatic tubing to be pushed vertically into the airspring body while simultaneously providing a reliable air seal and anaffirmative mechanical lock of the tubing into the airspring.
One feature of the invention is an airspring which has an integral coupling apparatus which is embedded in an orifice in the rigid member of the airspring where the coupling has a ringadapted to be sealingly positioned in the orifice, an annular sleeve with a plurality of jaws adapted for receiving the fluid conduit and affirmatively holding the conduit within the jaws an O-ring seal positioned in the orifice and adapted to sealagainst the exterior of the fluid conduit.
The ring has a flared portion for forcing the jaws of the clamp into full engagement with the exterior surface of the fluid conduit. This type of a coupling configuration avoids the problems associated withthe prior method of coupling airsprings having plastic rigid components through which the pneumatic connection was made, and no cross threading, under tightening or over tightening of the coupling is possible, thus avoiding the disadvantages and problemsof the prior art.
We are here to help you! If you close the chatbox, you will automatically receive a response from us via email. Please be sure to leave your contact details so that we can better assist